Fuzzy Classification of Mortality by Infection of Severe Burnt Patients Using Multiobjective Evolutionary Algorithms

نویسندگان

  • Fernando Jiménez
  • Gracia Sánchez
  • Jose M. Juarez
  • José M. Alcaraz
  • José F. Sánchez
چکیده

The classification of survival in severe burnt patients is an on-going problem. In this paper we propose a multiobjective optimisation model with constraints to obtain fuzzy classification models based on the criteria of accuracy and interpretability. We also describe a multiobjective evolutionary approach for fuzzy classification based on data with real and discrete attributes. This approach is evaluated using three different evolutive schemas: pre-selection with niches, NSGA-II and ENORA. The results are compared as regards efficacy by statistical techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Soft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors

Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...

متن کامل

Multi-objective evolutionary algorithms for fuzzy classification in survival prediction

OBJECTIVE This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and inte...

متن کامل

Evolutionary Multiobjective Optimization for Generating an Ensemble of Fuzzy Rule-Based Classifiers

One advantage of evolutionary multiobjective optimization (EMO) algorithms over classical approaches is that many non-dominated solutions can be simultaneously obtained by their single run. In this paper, we propose an idea of using EMO algorithms for constructing an ensemble of fuzzy rule-based classifiers with high diversity. The classification of new patterns is performed based on the vote o...

متن کامل

Evolutionary Multiobjective Optimization for Fuzzy Knowledge Extraction

− A new trend in the design of fuzzy rulebased systems is the use of evolutionary multiobjective optimization (EMO) algorithms. This trend is observed in various areas in machine learning. EMO algorithms are often used to search for a number of Pareto-optimal non-linear systems with respect to their accuracy and complexity. In this paper, we first explain some basic concepts in multiobjective o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009